IX. MRA AND CONSTRUCTION OF WAVELETS (PART TWO)

Now we are ready to characterize the spaces Vy and V_; in a Multiresolution

Analysis {V}, } ez using its scaling function and low pass filter.

Proposition 1. Suppose that {V;, }nez C L*(R) is a Multiresolution Analysis with
@ being its scaling function and mg being the low pass filter induced by . Then

Vo = {f € L*R)|f(&) = m(&)¢(€),m € L*([-m, 7))},
Vi = {f € L2R)|F(€) = m(26)@(26),m € L*([~m, 7))},
= {f € L*(R)|f(&) = m(2)mo(§)@(€),m € L*([—m,])}.

Proof. We first show that Vo € {f € L2R)|f(&) = m(6)@(&),m € L*([—=, 7))}
Since ¢ is a scaling function for the Multiresolution Analysis {V,, } ez, namely
{o(x —1)|l € Z} is a complete orthonormal system for V, so for any f € Vj, there
is a sequence of complex numbers {b;};cz € I2(Z) such that
fl@) =) biplz+1)
IEZ

where the convergence is under the norm of L?(R). Hence by applying Lemma 4 of
last chapter (together with Lemma 1 of last chapter), we have f(&) = 3, cn bip(€)e
where the convergence is under the norm of L?(R). The fact that {b}cz €
1?(Z) implies that >, bie™® € L?([—m,m]). Also, by Theorem 1 of last chap-
ter, the fact that {¢(z — )|l € Z} is an orthonormal system in L?(IR) implies that
> pez [9(€ +2km)|? = 1 holds for any ¢ € R. Thus, according to Theorem 2 of last

chapter, we have

F©) =D bip(e™ = p(9) (D be™).

1€Z lez
To prove that {f € L2(R)|f(¢) = m(&)p(&),m € L2(|—=,x])} C Vi, suppose
for any fixed f € L?(R), there is a function m(¢) € L2([—,x]), such that f(¢) =
S(6)m(€), then there is a sequence of complex numbers {b;};cz € (?(Z) such that
m(€) = ez bi(€)e’s. Again, the fact that {¢(z — )|l € Z} is an orthonormal
system in L?(R), together with Theorem 1 and Theorem 2 of last chapter, implies,

F©) = 2O bie™) =3 bip(¢)e™ .

lEZ lEZ
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2 IX. MRA AND CONSTRUCTION OF WAVELETS (PART TWO)

Finally, applying Lemma 4 to the equation f(¢) = ez bip(£)e™, we get that

f@) =3 bipla + 1)

leZ

where the convergence is under the norm of L?(R). This means that f € V.

As for the characterization of subspace V_1, we note that by using the definition
of Multiresolution Analysis, Lemma 1 of last chapter and characterization of Vj,
simple substitution of variables, and the fact that ¢(2¢) = ¢(&)mo(€), in that order,
we get that for any f € L*(R),

flx) e Vo1 <= 2f(2x) € W}

§> =m(§)@(€),m € L*([~m,])

= f(&) = m(20)p(26),m € L*([—,7])
= (&) = m(26)mo(&)(€),m € L*([—, 7).

Hence both characterizations for V_; are valid. [

= f(

Next we find a characterization for W_; with the help of the characterizations

we just obtained for V and V_1.

Proposition 2. Suppose that {V,, }nez C L*(R) is a Multiresolution Analysis with
@ being its scaling function and mg being the low pass filter induced by w. Then

Woi = {f € ’(R)| (&) = “m(2)mo (¢ + m)$(€), m € L*([—m,])}.
Proof. First we are to prove that

W_1 C {f € L*R)If(€) = e“m(2)mo(€ + m)p(€),m € L*([~m,7])}.

To this end, let f € L?(R) be a function in W_; = Vo ©V_q, then f € Vo, f L V_1.

According to Proposition 1, there exists a function m; € L?([—n,7]) such that
F(€) = @(€)ma(€). Morcover, for any m € L*([—m,x]), f(§) and m(28)mo(¢)$(&)

are orthogonal to each other. Namely,

/ T HEm (MmO FE)de = 0.

— 00
Using the technique of ”periodization of integral” which we employed in the proof

of Theorem1 and Theorem 2 of last chapter, we get that

T

STIG(E + 2km)[Pmy () m(2€)mo (€)dé = .

T kez
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The detail is left for the reader. Since ¢(z) is a scaling function for {V},},cz so by
theorem 1 of last chapter, Y, o, [¢(& + 2k7)|* = 1. Hence

T

m1(§)m(2§)mo(§)dE = 0.

—T

Thus
0

ma (©)m(2E)ma(€)de + /O " (©mEOma(E)de = 0.

—T

With a change of variable, we have

/ (28 o (€)m10(€) + i (€ — w)mo(€ — w)Jde.

Note that m(2¢) is an arbitrary m-periodical function with [ [m(2¢)[2d¢ < oc.
Denote g(&§) = m1(§)mo(&) + m1(§ — m)mo(§ — ), then g(§) is some specific -

periodical function with [ [g(£)[2d¢ < oo (prove it!). If we choose a m such at
m(28) = g(§) = m1(§)mo(§) + m1(§ — m)mo(§ — ) then we get that

[ e =0

—Tr

which means g(§) = 0 for all £ € R. Namely for any £ in R,

my (€)mo (&) +mi(§ — m)mo(§ — ) = 0.

This means that for each fixed £ € R, vectors (m (&), m1(§—m)) and (mo(§), mo(§ — 7)) €

C? are orthogonal to each other. Thus there is a function A : R — C such that

(m1(§), m1(§ — m)) = A(§)(mo(§ — ), —=mo(§))

Since m1 (&) and mo(§) are both 2r—periodical functions, and for each £ € R, the

norm of the vector (mg(§ — ), —mo(&)) is always 1 ( see Theorem 3 of last chapter),

so A(€) is a 2r—periodical function. Note also that for each £ € R,

(m1(§ —m),m1(§)) = A(§ — m)(mo(§), —mo(§ — 7)),

so we see thatA(§) = —\(¢ — 7) for any ¢ € R. Hence e~ \(€) is a m—periodical
function. It follows that I(§) = e_i%/\(g) is a 2m-periodical function. Lastly, since
m1(§) = AM&)mo(§ — ), we can compute (The detail is left for the reader) to get
that

[ imiepae =2 [ n@ras = [ o
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So \(&) € L3([—m, m]). Whence

| werde= [ Girde= [ 2= [ P <o,

—Tr —T

[NE]

therefore [(¢) € L?([—n, n]). Thus we have

F(€) = mi(©)@() = ME)mo(§ — m)@(€) = e*1(26)mo(§ — m)B(€).-

To prove that {f € L3(R)[f(€) = em(26)mo(€ + Mp(€),m € L3(|—m,7])} C
W_1, suppose that f € L2(R) is such a function such that f(€) = e®m(2¢)mo(€ + 7)@(€)
with some m(¢) € L?([—m,n]). With the help of Proposition 1, we will be able to
prove that f € Vg and f L V_; hence f € W_;. The details are left for the

reader. [

Now a characterization for the space Wy is immediate.

Theorem 1. Suppose that {V,}nez C L?(R) is a Multiresolution Analysis with ¢

being its scaling function and mq being the low pass filter induced by ¢. Then

Wo = (f € PRIFE) = S m(©mo(5 +m)p(5),m € ([, 7).

Proof. Note that by Lemma 1 of chapter 7, we have that for any n € Z,
f(z) e W, < f(2z) € Wy41.

Now a characterization of Wy can be derived from that of W_; the same way as in

the proof of Proposition 1. Details are left for the reader. [

The next theorem shows that using the characterization above for Wy, it is very
easy to identify such function ¢ € Wy that {¢(z 4+ [)|l € Z} forms a complete

orthonormal system for Wj.

Theorem 2. Suppose that {V,}nez C L?(R) is a Multiresolution Analysis with ¢
being its scaling function and mqg being the low pass filter induced by p. Let ¢ € Wy

be an arbitrary function. Then the following two statements are equivalent:
a){(x +1)|l € Z} forms a complete orthonormal system for Wy;

bJp(€) = eiév(ﬁ)mgb(g) for some function v € L?([—m,n]) such that
[v(€)| =1 for any € € R.
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Proof. First of all, according to the characterization of W, above, for any function
b € Wy, there is a v € L?([—m,7]) such that

s E ¢

$() = e Emo(5 + ML),

To prove the implication a)== b), we only need to show that if {¢)(z +1)|l € Z} is
a orthonormal system in L?(R), then function v above satisfies |y(¢)| = 1 for any
¢ € R. Note that by Theorem 1 of chapter 8, we have that ), , (€ + 2km))? =

for any & € R. This property is also enjoyed by ¢ since ¢(z) is a scaling function.
Using this property, together with that of low pass filter mg(§) stated in Theorem

3 of chapter 8, we do the computation as follows

§

=2 10§+ 2km)I* = 3y (©)1* - Imo §+kw+n)yz-yq3<§+m)y2
ke keZ
k=21 5 k=2l+1 5
= OP(_ Imo(5 +km+m)*16(5 SekmPe S mo (5 +km+m)|? |¢>( +km)|?)
kEZ keZ
Z‘mo 2420w +) |2 |¢( +2i7)| +Z| +2l7r+27r)| |gb(£—|—2l7r-{-7r)| )
lEeZ €7

Zymo +7TH¢( + 217) \2+Zymo H¢>( + 27 +7)[?)

lEZ lEZ

= HEOP(mo(§ + )P + Imo(5)P) = ().

As for the implication b)= a), if we assume |y(£)|> = 1 for all £ € R, with
D) = ei%fy(f) ( + 7T)30( ), we can similarly compute to get that >, , (€ +
2k7)|?> = 1. Hence by Theorem 1 of chapter 8, {¢(x + )|l € Z} is an orthonor-
mal system in L?(R). Furthermore, for any function g € Wy, according to the

characterization of Wy, there is a function s € L?([—, «]) such that

9(6) = S s(©mol 5 + mp(S

2)'

Since |y(€)]? =1, so

Clearly s(&)v(¢) € L?([—m,7]). So there is a sequence of complex numbers {¢; };cz €

12(Z) such that
s(E(€) =Y e
leZ
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Thus, by Theorem 2 of chapter 8, we have
3(6) = (Q_ae™)b() =D ab(©)e™.
= ez
Whence by Lemma 4 (together with Lemma 1) of chapter 8, we have that
g(z) = anp(x+1)
IeZ
where the convergence is under the norm of L?(R). This means that {y(z+1)|l € Z}

is a complete orthonormal system in Wy. 0O

Lastly, let us talk about the concrete way of constructing ¢ using ¢ and mg.
Recall the way how my is induced by ¢, we let {ay }rez € [?(Z) be the sequence of

complex numbers such that

then @(2£) = $(§)mo(§) where mo(&) = 3, oz are’™ therefore
mo (€ + ) Z N

keZ

In Theorem 2 above, if we take y(£) = 1, then a function ¢ is a wavelet if

$(26) = e mo(§+m)@(€) = Y are " FTIE(=1)FR(¢).
keZ
Hence
= Z@k(—l)’“w(fc —(k—1))
keZ

(x) =2 ar(-1)Fp2z — (k- 1)).

keZ

Take Haar wavelet as an example, if we let p(x) = X[o,1)(z), then
1 1
=D arp(r+k) = Sp() + 5ol - 1),
keEZ

thus ag = a1 = % and ay = 0 whenever k # 0 and k # —1. Thus, by the formula

above, we see that

Y(x) =2 an(-1)"e2e — (k- 1))

1 1
2. 5@(21: +1)+2- 5 (—D)p(2z +2)

= X[-4.0) T X[-1,-3)-



