
IX. MRA AND CONSTRUCTION OF WAVELETS (PART TWO)

Now we are ready to characterize the spaces V0 and V−1 in a Multiresolution

Analysis {Vn}n∈Z using its scaling function and low pass filter.

Proposition 1. Suppose that {Vn}n∈Z ⊂ L2(R) is a Multiresolution Analysis with

ϕ being its scaling function and m0 being the low pass filter induced by ϕ. Then

V0 = {f ∈ L2(R)|f̂(ξ) = m(ξ)ϕ̂(ξ),m ∈ L2([−π, π])},

V−1 = {f ∈ L2(R)|f̂(ξ) = m(2ξ)ϕ̂(2ξ), m ∈ L2([−π, π])},
= {f ∈ L2(R)|f̂(ξ) = m(2ξ)m0(ξ)ϕ̂(ξ),m ∈ L2([−π, π])}.

Proof. We first show that V0 ⊂ {f ∈ L2(R)|f̂(ξ) = m(ξ)ϕ̂(ξ),m ∈ L2([−π, π])}.
Since ϕ is a scaling function for the Multiresolution Analysis {Vn}n∈Z, namely

{ϕ(x− l)|l ∈ Z} is a complete orthonormal system for V0, so for any f ∈ V0, there

is a sequence of complex numbers {bl}l∈Z ∈ l2(Z) such that

f(x) =
∑

l∈Z
blϕ(x + l)

where the convergence is under the norm of L2(R). Hence by applying Lemma 4 of

last chapter (together with Lemma 1 of last chapter), we have f̂(ξ) =
∑

l∈Z blϕ̂(ξ)eilξ

where the convergence is under the norm of L2(R). The fact that {bl}l∈Z ∈
l2(Z) implies that

∑
l∈Z ble

ilξ ∈ L2([−π, π]). Also, by Theorem 1 of last chap-

ter, the fact that {ϕ(x− l)|l ∈ Z} is an orthonormal system in L2(R) implies that∑
k∈Z |ϕ̂(ξ + 2kπ)|2 = 1 holds for any ξ ∈ R. Thus, according to Theorem 2 of last

chapter, we have

f̂(ξ) =
∑

l∈Z
blϕ̂(ξ)eilξ = ϕ̂(ξ)(

∑

l∈Z
ble

ilξ).

To prove that {f ∈ L2(R)|f̂(ξ) = m(ξ)ϕ̂(ξ),m ∈ L2([−π, π])} ⊂ V0, suppose

for any fixed f ∈ ÃL2(R), there is a function m(ξ) ∈ L2([−π, π]), such that f̂(ξ) =

ϕ̂(ξ)m(ξ), then there is a sequence of complex numbers {bl}l∈Z ∈ l2(Z) such that

m(ξ) =
∑

l∈Z bl(ξ)eilξ. Again, the fact that {ϕ(x − l)|l ∈ Z} is an orthonormal

system in L2(R), together with Theorem 1 and Theorem 2 of last chapter, implies,

f̂(ξ) = ϕ̂(ξ)(
∑

l∈Z
ble

ilξ) =
∑

l∈Z
blϕ̂(ξ)eilξ.
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Finally, applying Lemma 4 to the equation f̂(ξ) =
∑

l∈Z blϕ̂(ξ)eilξ, we get that

f(x) =
∑

l∈Z
blϕ(x + l)

where the convergence is under the norm of L2(R). This means that f ∈ V0.

As for the characterization of subspace V−1, we note that by using the definition

of Multiresolution Analysis, Lemma 1 of last chapter and characterization of V0,

simple substitution of variables, and the fact that φ̂(2ξ) = φ̂(ξ)m0(ξ), in that order,

we get that for any f ∈ L2(R),

f(x) ∈ V−1 ⇐⇒ 2f(2x) ∈ V0

⇐⇒ f̂(
ξ

2
) = m(ξ)ϕ̂(ξ),m ∈ L2([−π, π])

⇐⇒ f̂(ξ) = m(2ξ)ϕ̂(2ξ),m ∈ L2([−π, π])

⇐⇒ f̂(ξ) = m(2ξ)m0(ξ)ϕ̂(ξ),m ∈ L2([−π, π]).

Hence both characterizations for V−1 are valid. ¤

Next we find a characterization for W−1 with the help of the characterizations

we just obtained for V0 and V−1.

Proposition 2. Suppose that {Vn}n∈Z ⊂ L2(R) is a Multiresolution Analysis with

ϕ being its scaling function and m0 being the low pass filter induced by ϕ. Then

W−1 = {f ∈ L2(R)|f̂(ξ) = eiξm(2ξ)m0(ξ + π)ϕ̂(ξ),m ∈ L2([−π, π])}.

Proof. First we are to prove that

W−1 ⊂ {f ∈ L2(R)|f̂(ξ) = eiξm(2ξ)m0(ξ + π)ϕ̂(ξ),m ∈ L2([−π, π])}.

To this end, let f ∈ L2(R) be a function in W−1 = V0ªV−1, then f ∈ V0, f ⊥ V−1.

According to Proposition 1, there exists a function m1 ∈ L2([−π, π]) such that

f̂(ξ) = ϕ̂(ξ)m1(ξ). Moreover, for any m ∈ L2([−π, π]), f̂(ξ) and m(2ξ)m0(ξ)ϕ̂(ξ)

are orthogonal to each other. Namely,
∫ ∞

−∞
ϕ̂(ξ)m1(ξ)m(2ξ)m0(ξ)ϕ̂(ξ)dξ = 0.

Using the technique of ”periodization of integral” which we employed in the proof

of Theorem1 and Theorem 2 of last chapter, we get that
∫ π

−π

∑

k∈Z
|ϕ̂(ξ + 2kπ)|2m1(ξ)m(2ξ)m0(ξ)dξ = 0.
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The detail is left for the reader. Since ϕ(x) is a scaling function for {Vn}n∈Z so by

theorem 1 of last chapter,
∑

k∈Z |ϕ̂(ξ + 2kπ)|2 = 1. Hence

∫ π

−π

m1(ξ)m(2ξ)m0(ξ)dξ = 0.

Thus ∫ 0

−π

m1(ξ)m(2ξ)m0(ξ)dξ +
∫ π

0

m1(ξ)m(2ξ)m0(ξ)dξ = 0.

With a change of variable, we have

∫ π

0

m(2ξ)[m1(ξ)m0(ξ) + m1(ξ − π)m0(ξ − π)]dξ.

Note that m(2ξ) is an arbitrary π-periodical function with
∫ π

0
|m(2ξ)|2dξ < ∞.

Denote g(ξ) = m1(ξ)m0(ξ) + m1(ξ − π)m0(ξ − π), then g(ξ) is some specific π-

periodical function with
∫ π

0
|g(ξ)|2dξ < ∞ (prove it!). If we choose a m such at

m(2ξ) = g(ξ) = m1(ξ)m0(ξ) + m1(ξ − π)m0(ξ − π) then we get that

∫ π

−π

|g(ξ)|2dξ = 0

which means g(ξ) = 0 for all ξ ∈ R. Namely for any ξ in R,

m1(ξ)m0(ξ) + m1(ξ − π)m0(ξ − π) = 0.

This means that for each fixed ξ ∈ R, vectors (m1(ξ),m1(ξ−π)) and (m0(ξ), m0(ξ − π)) ∈
C2 are orthogonal to each other. Thus there is a function λ : R −→ C such that

(m1(ξ),m1(ξ − π)) = λ(ξ)(m0(ξ − π),−m0(ξ))

Since m1(ξ) and m0(ξ) are both 2π−periodical functions, and for each ξ ∈ R, the

norm of the vector (m0(ξ − π),−m0(ξ)) is always 1 ( see Theorem 3 of last chapter),

so λ(ξ) is a 2π−periodical function. Note also that for each ξ ∈ R,

(m1(ξ − π),m1(ξ)) = λ(ξ − π)(m0(ξ),−m0(ξ − π)),

so we see thatλ(ξ) = −λ(ξ − π) for any ξ ∈ R. Hence e−iξλ(ξ) is a π−periodical

function. It follows that l(ξ) = e−i ξ
2 λ( ξ

2 ) is a 2π-periodical function. Lastly, since

m1(ξ) = λ(ξ)m0(ξ − π), we can compute (The detail is left for the reader) to get

that ∫ π

−π

|m1(ξ)|2dξ = 2
∫ π

0

|λ(ξ)|2dξ =
∫ π

π

|λ(ξ)|2dξ.
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So λ(ξ) ∈ L2([−π, π]). Whence

∫ π

−π

|l(ξ)|2dξ =
∫ π

−π

|λ(
ξ

2
)|2dξ =

∫ π
2

−π
2

|λ(u)|22du =
∫ π

−π

|λ(ξ)|2dξ < ∞,

therefore l(ξ) ∈ L2([−π, π]). Thus we have

f̂(ξ) = m1(ξ)ϕ̂(ξ) = λ(ξ)m0(ξ − π)ϕ̂(ξ) = eiξl(2ξ)m0(ξ − π)ϕ̂(ξ).

To prove that {f ∈ L2(R)|f̂(ξ) = eiξm(2ξ)m0(ξ + π)ϕ̂(ξ),m ∈ L2([−π, π])} ⊂
W−1, suppose that f ∈ L2(R) is such a function such that f̂(ξ) = eiξm(2ξ)m0(ξ + π)ϕ̂(ξ)

with some m(ξ) ∈ L2([−π, π]). With the help of Proposition 1, we will be able to

prove that f ∈ V0 and f ⊥ V−1 hence f ∈ W−1. The details are left for the

reader. ¤

Now a characterization for the space W0 is immediate.

Theorem 1. Suppose that {Vn}n∈Z ⊂ L2(R) is a Multiresolution Analysis with ϕ

being its scaling function and m0 being the low pass filter induced by ϕ. Then

W0 = {f ∈ L2(R)|f̂(ξ) = ei ξ
2 m(ξ)m0(

ξ

2
+ π)ϕ̂(

ξ

2
),m ∈ L2([−π, π])}.

Proof. Note that by Lemma 1 of chapter 7, we have that for any n ∈ Z,

f(x) ∈ Wn ⇐⇒ f(2x) ∈ Wn+1.

Now a characterization of W0 can be derived from that of W−1 the same way as in

the proof of Proposition 1. Details are left for the reader. ¤

The next theorem shows that using the characterization above for W0, it is very

easy to identify such function ψ ∈ W0 that {ψ(x + l)|l ∈ Z} forms a complete

orthonormal system for W0.

Theorem 2. Suppose that {Vn}n∈Z ⊂ L2(R) is a Multiresolution Analysis with ϕ

being its scaling function and m0 being the low pass filter induced by ϕ. Let ψ ∈ W0

be an arbitrary function. Then the following two statements are equivalent:

a){ψ(x + l)|l ∈ Z} forms a complete orthonormal system for W0;

b)ψ̂(ξ) = ei ξ
2 γ(ξ)m0( ξ

2 + π)ϕ̂( ξ
2 ) for some function γ ∈ L2([−π, π]) such that

|γ(ξ)| ≡ 1 for any ξ ∈ R.



IX. MRA AND CONSTRUCTION OF WAVELETS (PART TWO) 5

Proof. First of all, according to the characterization of W0 above, for any function

ψ ∈ W0, there is a γ ∈ L2([−π, π]) such that

ψ̂(ξ) = ei ξ
2 γ(ξ)m0(

ξ

2
+ π)ϕ̂(

ξ

2
).

To prove the implication a)=⇒ b), we only need to show that if {ψ(x + l)|l ∈ Z} is

a orthonormal system in L2(R), then function γ above satisfies |γ(ξ)| ≡ 1 for any

ξ ∈ R. Note that by Theorem 1 of chapter 8, we have that
∑

k∈Z |ψ̂(ξ + 2kπ)|2 ≡ 1

for any ξ ∈ R. This property is also enjoyed by ϕ since ϕ(x) is a scaling function.

Using this property, together with that of low pass filter m0(ξ) stated in Theorem

3 of chapter 8, we do the computation as follows

1 =
∑

k∈Z
|ψ̂(ξ + 2kπ)|2 =

∑

k∈Z
|γ(ξ)|2 · |m0(

ξ

2
+ kπ + π)|2 · |φ̂(

ξ

2
+ kπ)|2

= |γ(ξ)|2(
k=2l∑

k∈Z
|m0(

ξ

2
+kπ+π)|2|φ̂(

ξ

2
+kπ)|2+

k=2l+1∑

k∈Z
|m0(

ξ

2
+kπ+π)|2|φ̂(

ξ

2
+kπ)|2)

= |γ(ξ)|2(
∑

l∈Z
|m0(

ξ

2
+2lπ+π)|2|φ̂(

ξ

2
+2lπ)|2+

∑

l∈Z
|m0(

ξ

2
+2lπ+2π)|2|φ̂(

ξ

2
+2lπ+π)|2)

= |γ(ξ)|2(
∑

l∈Z
|m0(

ξ

2
+ π)|2|φ̂(

ξ

2
+ 2lπ)|2 +

∑

l∈Z
|m0(

ξ

2
)|2|φ̂(

ξ

2
+ 2lπ + π)|2)

= |γ(ξ)|2(|m0(
ξ

2
+ π)|2 + |m0(

ξ

2
)|2) = |γ(ξ)|2.

As for the implication b)=⇒ a), if we assume |γ(ξ)|2 = 1 for all ξ ∈ R, with

ψ̂(ξ) = ei ξ
2 γ(ξ)m0( ξ

2 + π)ϕ̂( ξ
2 ), we can similarly compute to get that

∑
k∈Z |ψ̂(ξ +

2kπ)|2 ≡ 1. Hence by Theorem 1 of chapter 8, {ψ(x + l)|l ∈ Z} is an orthonor-

mal system in L2(R). Furthermore, for any function g ∈ W0, according to the

characterization of W0, there is a function s ∈ L2([−π, π]) such that

ĝ(ξ) = ei ξ
2 s(ξ)m0(

ξ

2
+ π)ϕ̂(

ξ

2
).

Since |γ(ξ)|2 = 1, so

ĝ(ξ) = s(ξ)γ(ξ)ψ̂(ξ).

Clearly s(ξ)γ(ξ) ∈ L2([−π, π]). So there is a sequence of complex numbers {cl}l∈Z ∈
l2(Z) such that

s(ξ)γ(ξ) =
∑

l∈Z
cle

ilξ.
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Thus, by Theorem 2 of chapter 8, we have

ĝ(ξ) = (
∑

l∈Z
cle

ilξ)ψ̂(ξ) =
∑

l∈Z
clψ̂(ξ)eilξ.

Whence by Lemma 4 (together with Lemma 1) of chapter 8, we have that

g(x) =
∑

l∈Z
clψ(x + l)

where the convergence is under the norm of L2(R). This means that {ψ(x+l)|l ∈ Z}
is a complete orthonormal system in W0. ¤

Lastly, let us talk about the concrete way of constructing ψ using ϕ and m0.

Recall the way how m0 is induced by ϕ, we let {αk}k∈Z ∈ l2(Z) be the sequence of

complex numbers such that

1
2
ϕ(

x

2
) =

∑

k∈Z
αkϕ(x + k),

then ϕ̂(2ξ) = ϕ̂(ξ)m0(ξ) where m0(ξ) =
∑

k∈Z αkeikξ therefore

m0(ξ + π) =
∑

k∈Z
αke−ikξ(−1)k.

In Theorem 2 above, if we take γ(ξ) ≡ 1, then a function ψ is a wavelet if

ψ̂(2ξ) = eiξm0(ξ + π)ϕ̂(ξ) =
∑

k∈Z
αke−i(k−1)ξ(−1)kϕ̂(ξ).

Hence
1
2
ψ(

x

2
) =

∑

k∈Z
αk(−1)kϕ(x− (k − 1))

or

ψ(x) = 2
∑

k∈Z
αk(−1)kϕ(2x− (k − 1)).

Take Haar wavelet as an example, if we let ϕ(x) = χ[0,1)(x), then

1
2
ϕ(

x

2
) =

∑

k∈Z
αkϕ(x + k) =

1
2
ϕ(x) +

1
2
ϕ(x− 1),

thus α0 = α−1 = 1
2 and αk = 0 whenever k 6= 0 and k 6= −1. Thus, by the formula

above, we see that

ψ(x) = 2
∑

k∈Z
αk(−1)kϕ(2x− (k − 1))

= 2 · 1
2
ϕ(2x + 1) + 2 · 1

2
· (−1)ϕ(2x + 2)

= χ[− 1
2 ,0) − χ[−1,− 1

2 ).


